图像增强旨在通过修饰颜色和音调来提高照片的美学视觉质量,并且是专业数字摄影的必不可少的技术。近年来,基于学习的图像增强算法已达到有希望的表现,并吸引了日益普及。但是,典型的努力试图为所有像素的颜色转换构建一个均匀的增强子。它忽略了对照片重要的不同内容(例如,天空,海洋等)之间的像素差异,从而导致结果不令人满意。在本文中,我们提出了一个新颖的可学习背景知觉的4维查找表(4D LUT),该表通过适应性地学习照片上下文来实现每个图像中不同内容的增强。特别是,我们首先引入一个轻量级上下文编码器和一个参数编码器,以分别学习像素级类别的上下文图和一组图像自适应系数。然后,通过通过系数集成多个基础4D LUT来生成上下文感知的4D LUT。最后,可以通过将源图像和上下文图馈入融合的上下文感知的4D〜LUT来获得增强的图像。与传统的3D LUT(即RGB映射到RGB)相比,通常用于摄像机成像管道系统或工具,4D LUT,即RGBC(RGB+上下文)映射到RGB,可实现具有不同像素的颜色转换的最佳控制每个图像中的内容,即使它们具有相同的RGB值。实验结果表明,我们的方法在广泛使用的基准中优于其他最先进的方法。
translated by 谷歌翻译
视频框架插值(VFI)旨在合成两个连续帧之间的中间框架。最先进的方法通常采用两步解决方案,其中包括1)通过基于流动的运动估计来生成本地光线的像素,2)将扭曲的像素混合以通过深神经合成网络形成全帧。但是,由于两个连续的帧不一致,新帧的扭曲功能通常不会对齐,这会导致扭曲和模糊的帧,尤其是在发生大型和复杂的运动时。为了解决这个问题,在本文中,我们提出了一种新颖的视频框架插值变压器(TTVFI)。特别是,我们以不一致的动作为查询令牌制定了扭曲的特征,并将运动轨迹中的相关区域从两个原始的连续帧中提出到键和值。在沿轨迹的相关令牌上学习了自我注意力,以通过端到端训练将原始特征融合到中间框架中。实验结果表明,我们的方法在四个广泛使用的VFI基准中优于其他最先进的方法。代码和预培训模型都将很快发布。
translated by 谷歌翻译
Top-K建议是推荐系统中的一个基本任务,通常通过比较积极和负对对学习。对比损失(CL)是最近受到更多关注的对比学习的关键,我们发现它非常适合Top-K建议。但是,这是一个问题,即CL处理正面和阴性样本的重要性。一方面,CL面向一个正样品的不平衡问题和许多阴性样品。另一方面,稀疏的数据集中很少有稀疏项目应该强调他们的重要性。此外,其他重要问题是稀疏正项目仍然没有充分利用建议。因此,我们通过使用CL损耗功能同时使用多个正项目(或样本)来提出新的数据增强方法。因此,我们提出了一种基于多样的对比损失(MSCL)功能,通过平衡正面和负样本和数据增强的重要性来解决两个问题。基于图表卷积网络(GCN)方法,实验结果表明了MSCL的最先进的性能。所提出的MSCL很简单,可以在许多方法中应用。我们将在验收时发布GitHub上的代码。
translated by 谷歌翻译
我们旨在应对这项工作中具有挑战性但实用的风景图像支出任务。最近,生成的对抗性学习通过为给定图像产生语义一致的内容来显着提高图像支撑图。但是,现有的方法总是遭受模糊质地和生成部分的伪像,这使得整体支出结果缺乏真实性。为了克服弱点,这项工作通过从其邻居(即参考图像)借用像素来研究一种原理来综合纹理丰富的结果,命名为\ textbf {re} ference- \ textbf {g textbf {g} (rego)。特别是,Rego设计了自适应内容选择(ACS)模块,以将参考图像的像素传递以补偿目标一个的纹理。为了防止生成部分的样式受到参考图像的影响,进一步提出了一种样式排名损失,以增强Rego,以合成样式符合的结果。在两个流行的基准分析NS6K \ cite {yangzx}和ns8k \ cite {wang}上进行了广泛的实验,很好地证明了我们的rego的有效性。我们的代码将公开可用。
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
translated by 谷歌翻译
Face manipulation detection has been receiving a lot of attention for the reliability and security of the face images. Recent studies focus on using auxiliary information or prior knowledge to capture robust manipulation traces, which are shown to be promising. As one of the important face features, the face depth map, which has shown to be effective in other areas such as the face recognition or face detection, is unfortunately paid little attention to in literature for detecting the manipulated face images. In this paper, we explore the possibility of incorporating the face depth map as auxiliary information to tackle the problem of face manipulation detection in real world applications. To this end, we first propose a Face Depth Map Transformer (FDMT) to estimate the face depth map patch by patch from a RGB face image, which is able to capture the local depth anomaly created due to manipulation. The estimated face depth map is then considered as auxiliary information to be integrated with the backbone features using a Multi-head Depth Attention (MDA) mechanism that is newly designed. Various experiments demonstrate the advantage of our proposed method for face manipulation detection.
translated by 谷歌翻译
Implicit regularization is an important way to interpret neural networks. Recent theory starts to explain implicit regularization with the model of deep matrix factorization (DMF) and analyze the trajectory of discrete gradient dynamics in the optimization process. These discrete gradient dynamics are relatively small but not infinitesimal, thus fitting well with the practical implementation of neural networks. Currently, discrete gradient dynamics analysis has been successfully applied to shallow networks but encounters the difficulty of complex computation for deep networks. In this work, we introduce another discrete gradient dynamics approach to explain implicit regularization, i.e. landscape analysis. It mainly focuses on gradient regions, such as saddle points and local minima. We theoretically establish the connection between saddle point escaping (SPE) stages and the matrix rank in DMF. We prove that, for a rank-R matrix reconstruction, DMF will converge to a second-order critical point after R stages of SPE. This conclusion is further experimentally verified on a low-rank matrix reconstruction problem. This work provides a new theory to analyze implicit regularization in deep learning.
translated by 谷歌翻译
Future work sentences (FWS) are the particular sentences in academic papers that contain the author's description of their proposed follow-up research direction. This paper presents methods to automatically extract FWS from academic papers and classify them according to the different future directions embodied in the paper's content. FWS recognition methods will enable subsequent researchers to locate future work sentences more accurately and quickly and reduce the time and cost of acquiring the corpus. The current work on automatic identification of future work sentences is relatively small, and the existing research cannot accurately identify FWS from academic papers, and thus cannot conduct data mining on a large scale. Furthermore, there are many aspects to the content of future work, and the subdivision of the content is conducive to the analysis of specific development directions. In this paper, Nature Language Processing (NLP) is used as a case study, and FWS are extracted from academic papers and classified into different types. We manually build an annotated corpus with six different types of FWS. Then, automatic recognition and classification of FWS are implemented using machine learning models, and the performance of these models is compared based on the evaluation metrics. The results show that the Bernoulli Bayesian model has the best performance in the automatic recognition task, with the Macro F1 reaching 90.73%, and the SCIBERT model has the best performance in the automatic classification task, with the weighted average F1 reaching 72.63%. Finally, we extract keywords from FWS and gain a deep understanding of the key content described in FWS, and we also demonstrate that content determination in FWS will be reflected in the subsequent research work by measuring the similarity between future work sentences and the abstracts.
translated by 谷歌翻译
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in \cite{guo2022monte}, for solving general nonlocal models such as integral equations and nonlocal PDEs. Similar as in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable approach for high dimensional problems. We present a variety of test problems, including high dimensional Volterra type integral equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the effectiveness of our approach.
translated by 谷歌翻译